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Numerical techniques traditionally used in the simulation of
compressible fluid dynamics are applied to the ion etching process.
This process is governed by a non-linear hyperbolic conservation law
describing the evolution of the local slope of a surface. The hyperbolic
nature of the equation allows discontinuities of stope to develop which
are seen numericatly and experimentally as cusps in the surface of the
etched material. These discontinuities are analogous to shocks in fluid
dynamics. Initialty, an essentially non-oscillatory (ENO) algorithm is
used to simulate the evolution of a single homogeneous material with
tixed boundaries and known flux function. The algorithm is then
extended to simulate the evolution of two different homogeneous
materiats which is more representative of a typical etching configura-
tion. The two materials are assumed to be separated by an interface of
known form. The additional mathematical and physical reasoning to
describe the two-material configuration is presented from which a new
algorithm is developed. This algorithm requires the hyperbolic conser-
vation law to be solved on a moving mesh since the interface between
the materials is numerically treated as a moving boundary. The nature
of the two-material prablem is such that shocks and expansion waves
can develop at this interface and thus special numerical treatment of the
moving boundary is required; this is achieved by using a lower order
approximation in this localised region. Finally, a more realistic method
to calculate the flux function is adopted which changes the nature of
the governing equation since the flux function becomes dependent on
the geometry of the surface as well as the local slope. The algerithm is
extended to include this flux calculation which allows the numerical
simulation of the physically observed phenomena such as R/E fag and
undercutting.  © 1994 Academic Press, Inc.

1. INTRODUCTION

In an age of ever-increasing miniaturisation the need for
tools to help understand the microchip labrication process
becomes more important. The ultimate aim of this branch of
research is to numerically simulate this fabrication process,
thereby giving design engineers an eflective tool to optitnise
chip design as well as to allow further very large scale
integration (VSLI). Ton etching is part of the fabrication
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process and is generally preferred over other types of
etching because of its highly anisotropic nature.

The ion etching model we have adopted assumes a known
energy and angular distribution of energetic particles
incident upon a surface. We also assume that all etched
materials have a constant number density {(i.e., a fixed
number of particles per unit volume), and that we have
knowledge about the energy and angular dependence of the
yield per incident particle. That is to say, we have informa-
tion describing the rate at which a surface dissolves for a
specified ion bombardment at a given angle and energy.
This model was proposed by Jurgensen and Shagfeh [1]
and is believed to account for some of the major factors in
ion etching. However, this model assumes that all particles
either stick or react with the surface at their initial point of
contact. This means that there are no glancing angle reflec-
tions. In reality this may not be the case, especially at large
angles of incidence. We also neglect any other mechanisms
such as ion steering by microelectric fields. Preliminary
research of this mechanism has been conducted by Arnold
and Sawin [2]. We do not specifically account for any
deposition of polymers in the plasma or redeposition of
etched material. Nevertheless, this may be dealt with in the
yield function if redeposition can be modeled as a function
of angle and energy distribution.

The objective of this paper is to present a consistent algo-
rithm to numerically simulate this ion etching model for
configurations which have practical applications in the ion
etching industry. Previous numerical simulation have been
performed only recently. Three different approaches have
been considered: Ross [3] adopted a Lax Wendroff finite-
difference scheme with artificial viscosity to deal with a
single material evolution. Jurgensen and Shagfeh [4]
adopted a method of characteristics approach which solves
an ordinary differential equation along the characteristic
paths. Another simulation has been done by Pelka er al. [5]
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using the string algorithm. This algorithm represents the
surface as a string of points and then moves these points
according to their local etch rate. However, problems occur
at corners and regions where the surface varies rapidly.
To overcome this a special algorithm is used which is
detrimental to the generality of the scheme. The method of
characteristics has the disadvantage that it is only valid in
smooth regions. When characteristics intersect the solution
must be treated locally as a Riemann problem. The formula-
tion used by Ross has the most general applications.
However, tnstead of using the Lax Wendroff finite-
difference scheme which requires the use of artificial
viscosity to solve hyperbolic problems we have adopted an
essentially non-oscillarory (ENQ) approach to solving the
slope equation.

This paper is organised as follows: In Section2 we
present-the mathematical model describing the ion etching
process in a single domain as well as the treatment. of the
interface between two materials. In Section 3 the numerical
solution to this model is presented for a single material
using the ENO scheme. Some validation and convergence
results are shown. In Section 4 the numerical algorithm is
extended to deal with a two-material configuration and
results using this algorithm are shown in Section 5. Finally
in Section 6 the flux function is modified to deal with
shadowing effects as proposed by Jurgensen and Shagfeh
[4, 1]. This extension is numerically impilemented, and
results demonstrating the physicaily observed phenomena
are presented.

2. MATHEMATICAL MODEL

2.1. Governing Equation

Jurgensen and Shagfeh [1] obtained the following
evolution equation for the configuration shown in Fig. 1,

a_G+ ?.g_ =0
FTE P

(1)
where G(X, t) is the local height of the surface and « and v
are the local surface velocities in the x and y directions,
respectively. Differentiating this equation with respect to x
we obtain

pi+u-p—v). =0, (2)

where
p=0G/dx.
We will call Eq. (2) the slope equation. The slope equation

describes the evolution of the slope along a one-dimensional
interface which can be integrated to reconstruct a two-
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dimensional surface. If # and ¢ are purely functions of the

slope p this equation 1s a hyperbolic conservation law,

where the fiux function is given by
fip)=up—v. (3)

This is the case in regions where the incident particles
have linear trajectories which are limited only by the local
surface slope. Nevertheless, if the trajectories are obscured
by a non-local point the flux function will depend on the
slope p and the limiting trajectory angle B. In practice, there
are two angles (B, B} which define an integration
region that determines the local surface velocities (u, v).

If the surface is raised, isolated, and convex (Fig. 2a} then
it is said to be locally self-shadowed and the angle B will be
purely dependent upon the local slope p. On the other hand,
if the surface is shadowed due to the surface geometry
(Fig. 2b) then the angle B is dependent on the local coor-
dinates as well as those of the shadowing point {x.,, V).
This means that « and v are functions of (p, Xy, Ve, X ¥)
and the governing slope equation is

p.+ /(B p).=0, (4)
where B=B(p) in a locally self-shadowed region and
B=B(p, x4, ya, X, ¥} in a shadowed region.

Two typical flux functions for the unshadowed slope
equation are plotted in Fig. 3. The first flux function is
similar to that found experimentaily by Lee [6] and used by
Ross [3]. The probability of a collision resulting in an atom
acquiring enough momentumn directed away from the sur-
face 1o leave the material increases as the angle of incidence
increases. However, as the incident angles of particles
become very large the ion flux drops off and the probabiiity
of purely elastic reflection of the ions is increased. This
causes the turning points in the flux function at incident
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FIG. 1. Etching configuration for mathematical model.
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FIG. 2. Shadowing regions due to surface geometry.

angles of about 40°-60° (i.e., p = +1). The second flux func-
tion is representative of a flux function calculated numeri-
cally by assuming that the yield is independent of the
angular distribution of incident particles [4]. Therefore,
etching is proportional to the energy and flux of particles
integrated over an appropriate domain (in this case an
unshadowed domain}. It can be appreciated that since there
will be particles incident, and therefore etching, on the
surface at all slope values the flux function tends to infinity
at large slope values.

2.2. Moving Boundary Conditions between Materials

~ In extending the model to deal with two materials we
have two slope equations, one for each material. The

a f(p)

P

configuration is shown in Fig. 4, where we have an upper
and lower material separated by an interface described by a
known function g(x).

The boundary condition between these materials has
been studied by Ross {7]. After some manipulation of the
slope and evolution equations for each material, (1}, (2), we
can derive a Rankine Hugoniot condition for the moving
boundary of the form

S (py(1))
Put) — 8'(xs(1)

d. It i
_do{n_ fi(ph) -

di - py(1) =g (xul1))
where p}, p, are the boundary values of the siope in the

upper and lower material, respectively, and x,(¢) is the x
location of the moving boundary.

b f(p}

.

p

FIG. 3. Flux functions for slope equation: (a) angle and energy dependent flux; (b) purely energy-dependent flux.
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FIG. 4. Two material configuration.

However, the correct boundary value of the slope in the
upper surface pj may not be the limit value of the slope
Pum =lim, ., p“(x, ¢). The reason for this is due to some
physical restrictions which must be imposed at the moving
boundary. These are that the upper surface boundary condi-
tion is independent of the fower surface evolution and that
the lower surface boundary condition is purely dependent
on the evolution of the upper surface. This is quite rational
since the lower surface cannot etch until the upper surface
has been eroded. Mathematically, this means that the upper
surface must be an outflow boundary condition and the
lower surface must be an inflow boundary condition. Ross
[7] derived the following conditions to determine the upper
surface boundary condition under this physical rationale,

S(pp(t))
—————(p— g'(x,(1)))
i —g e 8
=f(p) forall p<pyn, (6)

if the speed of the moving boundary, dx,/d:, is positive.
Similarly,

0
P )
r—-gy | ET

>f(p) forall p> pym, (7)

if the speed of the moving boundary, dx, /dt, is negative. The
sign of the moving boundary direction is given by the
material configuration.
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Having determined the correct upper surface boundary
condition p} and the associated boundary speed dx,/dt we
need to determine the lower surface boundary condition p.
Due¢ to the nature of the flux function there may not be a
unique root to the lower surface Rankine Hugoniot condi-
tion given by the second equation in (5). The physical
reasoning that the boundary should be an inflow determines
a unique root and the mathematical inequality which must
be imposed to determine this root is

dx, , ,
1o~ 1) <| 5 (= ) ®)

for all p between p;,, and p,. Here p,, denotes the limit
value of the slope in the lower surface at the boundary
Pum =lim,_, ., p'(x, ). This is the similar to the entropy
condition for the lower material.

3. SINGLE MATERIAL FORMULATION

The ENO scheme adopted here (Fig. 5) is based on a
paper by Harten etal [8]; here we have adopted a
Runge-Kutta time-stcpping scheme rather than a Taylor
expansion scheme proposed in that paper. This is because in
general we do not have perfect knowledge of the flux
function and to use the time stepping scheme proposed
by Harten eral we need to be able to calculate higher
derivatives of the flux function.

We solve the slope equation (2} in the conservative form,

Fi*t =i+ A n— fimin)h )

where 1= Aifh {assuming a uniform mesh and constant
time step) and p; is the cell-averaged value of the slope at
time level 1 =1" in cell j defined by

PRNT

—n = n l n
py=plx,t }‘ELM px, ") dx,

where hi=x,.10,—x,_p. 10y
Xise X3 Xuan X Xan
A A / A A
o Tl
. , . . , o
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L
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FIG. 5. Nomenclature for the ENQ scheme.
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FIG. 6. Discretization required to maintain spatial accuracy in the
Runge-Kutta time integration.

_fj- 1172 18 the time-averaged flux at the location x=x;,
defined by

LEa
D=t
+1,n‘2: )) AI ”

where dr=1""1--1"

j:'+l/2 J(p(x; 110 1)) AL

(11)

To numerically evaluate the conservative form of the
conservation law the scheme can be described in three
distinct steps: (i) reconstruction, (ii) solution in the small,
and (iii) cell averaging.

In the reconstruction step, we reconstruct a piecewise
polynomial approximation of the variable p(x, ") from the
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cell averages p7 using reconstruction via primitive function.
Next, we propagate the solution in the small in each cell to
determine an approximation to p(x, ¢) at /"*! from our
solution at ¢”. Finally, we close the loop by updating the cell
averages using Eq. (9). This involves evaluating the flux
value at the cell boundaries which is done by using an
approximate Riemann solver. In the present scheme we
have used the modified Roe solver as proposed by Harten
et gl. [8] and an exact solver which is a discrete approxima-
tion to the exact Riemann solution.

As mentioned previously the solution in the small is
evaluated by using a Runge-Kutta method as proposed
by Shu and Osher [9]). We are primarily interested in
evaluating the solution only at the cell boundaries so we can
calculate the time-averaged flux. Nevertheless, to maintain
high order accuracy in this spatial operator we have to
interpolate the solution at » points in each cell. We cannot
use our reconstruction stencil as the slope values may not be
continuous at the mesh points. Here r denotes the number
of points used in the reconstruction stencil. Figure 6
demonstrates this point. We initially have a piecewise cubic
solution as shown by the continuous line marked p(x, ¢). In
order to evaluate the spatial operator in each celi we have
to propagate the solution at the boundaries as well as the
two intermediate points (shown by the dotted lines). These
four points allow us to calculate the spatial derivative to an
order of accuracy consistent with the cubic representation of
the solution. Finally, after evaluating the Runge-Kutta
algorithm we end up with a cubic approximation to the
solution af time ¢ + At as shown by the dashed line. We note
that the solution remains discontinuous at the cell boundary
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FIG. 7. Convergence errors for test case using Burgers equation with exact inflow boundary conditions. Comparison of current test with results of

Harten et al. [8].
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3.1. Validation and Convergence Tests

As means of validation and to check the conveigence
of the algorithm, using the Runge-Kutta time stepping
scheme, test runs with the inviscid Burgers equation were
made. These test cases were taken from the paper by Harten
etal [8).

We use the initial condition:

u(x, 0)= 1.0+ Lsin(nx)

and a CFL condition of 0.6. The solutions were computed
to a final time {5,,; = 0.3 time units. The computations were
made for —1<gx<1, =0 using Roe’s approximate
Riemann solver. The form of the solution for this problem
is a shock developing when ¢ = 2/n. The final time is well
below this occurrence and therefore the exact solution can
be calculated using a Newton-Raphsen iteration on the
characteristic equation. The results from Harten et al. [8]
used a time stepping scheme which is of the same order as
the spatial discretisation. The results from the present
scheme use a third-order Runge-Kutta algorithm, as
proposed by Shu and Osher {9], in all calculations
regardiess of spatial accuracy.

A typical test case is plotted in Fig. 7 which shows L _, and
L, errors plotted versus the number of grid points. Each set
of lines corresponds to a different spatial accuracy g which
means that a stencil of r = g + 1 was used. The ENQO scheme
is equivalent to Godunov’s scheme for a first-order calcula-
tion and we note that exactly the same results are achieved
in this case. All these results are identical to the original
ENO scheme presented by Harten ez al. [8].

Flu)
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The second test case used by Harten ef al. [8] used a non-
convex flux function. This test was the Riemann problem,

x<0
x>0,

u b fw), =0, ulx,0)= {““

Ugp,

where the flux function f(u) was taken to be

fu) =50 — 1)} —4).

In this case we used the exact Riemann solver. Two test
cases were run with the initial conditions,

2, x<0
ul(x90):{_2 ¥>0

and
-3, x<0

The first diagram in Fig. 8 shows the relevant upper
convex envelope for the correct entropy solution to the
Riecmann problem, test case 1. Similarly, the second diagram
in Fig. 8 shows the lower convex envelope relevant to the
second Riemann problem, test 2. From this we note that the
solution to the first problem will involve two shocks
separated by an expansion fan whilst the second problem
involves two expansion regions separated by a stationary
shock.

Flu)

FIG. 8. Quartic flux function for Riemann tests. Dashed lines show the upper and lower convex envelopes.
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F1G. 9. Solution to Riemann test case | with a first- and

The test cases were both calculated with a CFL condition
of 0.8 in the domain —1 < x <1 with 40 equispaced mesh
points using an ¢xact Riemann solver. The first test case was
calculated for 80 time steps and the second for 20 time steps,
both using a third-order Runge-Kutta scheme. The solu-
tions to test 1 and test 2 can be seen in Figs. 9 and 10 respec-
tively for first- and third-order accurate schemes. The exact
solution is shown by the continuous line and the numerical
results are shown by the circles. In the first test case we see
that we capture the location of the shock and expansion
wave satisfactorily. In the second test case we see that the
stationary shock is perfectly resolved. Harten et al. [8]
noted that the medified Roe solver for this case had the
correct structure although the propagation speed was

-1 -05 ] Q.5 1

third-order accurate scheme. Sclid line shows exact solution,

incorrect. Nevertheless, when the test was refined the correct
entropy solution was obtained.

3.2. Single Material Ion Etching Results

The following results use a flux function given by
Ross [37,

0.0601219 cos(f) —0.0192006 cos(38)
+0,0006436 cos(58) — 0.0002343 cos(76)
—0.0004133 cos(968) + 0.0004361 cos(116)
—0.0002564 cos(136) + 0.0002366 cos(158),

Jp)= (12)

where # = arc tan{p).

P{X}
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Px)
o
T
1

05 1

leu‘g;\ PR S SN R P .;I}

0.5 1

&
tn
L=

FIG. 10. Solution to Riemann test case 2 with a first- and third-order accurate scheme, Solid line shows exact solution.
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FIG. 11.

In these runs we only consider profiles that have constant
slope values at the boundaries of the computational
domain. If an inflow boundary condition is required we use
the appropriate constant slope values. The calculations for
these runs are done in the {x, p) plane and to recover the
(x, ) plane we cffectively integrate p(x, ¢) by summing the
cell averages. However, we do require an additional integra-
tion constant which is evaluated in a region of constant
slope using Eq. (1). If p is a constant then we can integrate
Eq. (1) to obtain

Y(x,, )= y(x,,0)—f(p)-t,

where x, is an x location which has constant slope.

y{x.t)
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p{xt)

Numerical simulation of Riemann problem in (x, p) and (x, p) planes. Each line corresponds to solution after a period of two time units.

The first result corresponds to the solution of a Riemann
problem. Here we start with an initial condition of p~ =4,
p*t = —4 which corresponds 1o the upper line in the first
plot in Fig. 11, This figure shows the evolution of the
material at time intervals of two units. In the {x, p) plane we
note the development of three shocks shown by the near
vertical regions. These are separated by two expansion
regions. We also note the piecewise polynomial representa-
tion of the solution; the gaps between the solution oceur at
the cell boundaries. In the (x, y) plane the shocks are seen
as cusps in the surface forming facet corners whilst the
expansion regions can be seen as regions of smooth
curvature between these corners. The evolution of the
surface for ¢ > 0 is in the negative vy direction,

FIG. 12. Surface evolution of a test case used by Ross (see text). Each line corresponds to a time interval of one unit. The initial profile contains
only one shock (cusp in the surface) which moves to the right and then changes direction whilst a second shock develops on the left-hand side.
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The second test case is a demonstration run used by Ross
[3]. The above flux function is used to calculate the
evolution of a profile which has an initial condition of two
horizontal lines connected by the curve:

y(x)}=15+0.65(x—0.3) +0.92(,/0.8008 — x - /0.5008)

for 0.3<x<08

The resuits in the (x, y) plane can be seen in Fig 12.
Again the initial profile is given by the uppermost line and
evolution for ¢ >0 is in the negative y direction. The lines
correspond to the evolution of the surface at intervals of one
time unit. The initial surface contains one shock at x =08,
This shock initially propagates towards the right but is
intersected by a second weak shock which reverses the
direction forming a single shock moving towards the left.
Another shock also develops from the initially smooth
region at x=0.3. This shock also propagates towards the
left.

4. TWO MATERJALS FORMULATION

The next step is to include a second material into the
simulation. As described in Section 2.2, given a configura-
tion with a known interface slope, g'(x,) and the limit
values of the slopes in the upper and lower materials, pf
and py,,. we can determing the moving speed, dx,/dt, and
the boundary conditions for the slopes, p% and p}. The
probiem here is that the limit slope value pj;, may not
necessarily be the same as the boundary slope value p,. To
connect the limit value py,, to the boundary value p, a shock
or expansion region may develop. For this to happen in our
numerical scheme the moving boundary must be a mesh
point so that the correct boundary value can be imposed. To
achieve this we introduce a linear stretching in the x’coor-
dinate. The motivation for such a transformation came from
a paper on the numerical solution to a Stefan problem by
Rengquist and Patera [10].

4.1. Co-ordinate Stretching

The co-ordinate stretching is of the form

(xp(2g) —c)
(x (1) —c)

t= (x—e)+og {13)

where x,(!) is the location of the moving boundary at time
t, Iy 1s the initial time, and ¢ is taken to be a fixed datum
point in the x plane, for example, the left boundary if the
right boundary is moving. If we let T = ¢ we can perform a
change of variabies in the following fashion: Denoting the
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value of the slope in terms of the new variables, {%, 7) by 5,
we {ind that

=2l g2+ % ar (14a)
21, dt|:
0% 0%
Lt 14b
d dx\, ar xdt (14b)
dr = di (14c)

and substituting Eqs. (14b) and (idc) into Eq. (14a) we
obtain

) g (2] 2]
where
ﬁ_ﬁé@ _xltg)—e
T ax|, xyn)-c
v__ai o xplted =) dx(t)
——— = — L X
ér|, (x,{1)—¢)? at

_(Fo) dxyfn)
(o —c) dr

A change of slope in the original co-ordinates is given by

J
dp==L (16)

dx + fj—"f' dt;
‘ 01|
combining Egs. (15) and (16) we find

%

ap
dx =Bz

e {(17a)
, >

T

-

ap

ap
r+81

at

ap
T

(17b)

£

Therefore we can rewrite the slope equation

p+f{p)p.=0

by substituting in Eqs. (17a) and (17b} as

Botvps+ f(P)fip.=0. (18)

This equation is similar to the untransformed equation,
except that it has an extra convective term, vp.. We see that
the characteristics of the transformed equation are given by
the solution to the equation

d
S vEBIH). (19)
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5o
dar T di

we see that by combining these two equations we recover
the original characteristic equation,

dx
E=f (p)

Noting that v is linearly dependent on % and B is

independent of ¥ we can rewrite Eq. (18) as

Pt P+ e=v: P (20}

It is possible to use a more general transformation of the
form

. (xl(fo)bxi(to)
= —

(x — x4 (1)) + x4 (26),
X5(1) = x}(0) ) R
where x/ and x, are the left and right moving boundaries,
respectively.
In this case,

_ xiio) = xi(to)

(= xh(0)

£~ xi(te) ][dxg dxg} 5

[ dx?
v= — —_
xpn—xyndLdar dr

dr

This form is needed when solving for the two-material
configuration, since the moving boundary will be on the ieft
in one domain and on the right in the other. However, the
external boundaries in each domain are usually fixed, which
¢liminates some of the terms in the expressions above. For
example, if xi(¢)=c the transformation above reduces to
Eg. (13). It should also be appreciated that if the computa-
tional domain is translated at the speed of the moving
boundary (i., dx}/dt = dx’ /dt} then v, =0. This is to be
expected since in this case there is no grid divergence and
the co-ordinate mapping is pure translation,

4.2. Time Splitting

We now wish to solve a hyperbolic conservation law with
a source term on the right-hand side of Eq. (20), To do this
we choose to split the equation in the following fashion:
Starting with the equation,

P+ Ge=vy p,

SHERWIN, KARNIADAKIS, AND ORSZAG

where  G=G(p, £, 1)=v(%, x,(t), x3(1)) p + F(x4(1) f(F)
and integrating over a fime interval we obtain ‘

Al

g+l
Pt pr+ Gidrzj v, pdt.
'H

Fid

(21)

Note that the nomenclature here is the same as the
original formulation for a single material, Fig. 3, except that
the grid is now in %(x, 7) coordinates instead of x. Therefore
the slope p is denoted as p. Splitting this equation to deal
with the flux term and the source term individually reduces
Eq. (21} to

e+l

g=p"—| Ged (22)

M+t

ﬁn+1=q+J. "_fﬁdt.

Mm

(23)

If we integrate over a cell in space from £, 5 to X, |, we
recover an equation similar to the conservative form of the
slope equation {9),

FLE S

RERY . EIESY] cn .
J‘ q_,-dx:f P; dth [G(p, %50 120 1)
¢ "

-1 K12
—G(p, %_p, )] dr. (24}
Defining
. 1 r&vi2 U
pi=y PlE, ") dx
-2
and
B ] ot
Giyap =;f_f . G(p, X1z, 1) dl,
Eq. (24) becomes
q)‘:ﬁ;_l[cj—#lﬁ_éj—lﬂ] (25)
A=dt/h,
where
_ 1 rdiviz
g=3 q dx.

“.ij_”g

We solve this equation in a similar manner to that
described in Section 3. We reconstruct the solution as a
piecewise polynomial approximation from the cell averages
p. Then we propagate the solution in the small using a
Runge-Kutta scheme. In this case we have to solve the
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transformed equation (20), which involves the extra convec-
tive term. Finally we update the cell average p 710 determine
the pseudo-cell average ¢,. However, the major difference is
that the flux function G is no longer a function of the slope
alone which means that the characteristics, given by
Eqg. (19), are no longer straight lines. This makes the
solution of the Riemann problem, to determine the correct
flux value at the cell boundaries, more complicated.
Nevertheless, we note that the solution to the Riemann
problem,

A A oA 2 i i % ﬁ—, x<0
P+ GUP, R, tp) =0  with P(-"’Olz{ﬁt x>0,
where
o G(4, %, 1))
G(p: xOs r0)=_—‘,.___
ap =g, xh =0}, xh= xhirg)

and %, 1, are the fixed location and time, has characteristics
given by

dx ..
@ =G'(p, 2o, 1)

= ¥(Xy, Xgllo), X3(1a}) + B(xs(ta)) f'(p).

The characteristics of this problem are the same as the
characteristics of the transformed problem given by Eq. (19)
in the limit X — £, and ¢ — ¢,. Since we are only interested
in solving the Riemann problem at a known x location and
time ¢ we use the solution to an approximate Riemann
solver with a flux f(p)=G{p, X,, 1) rather than the exact
Riemann problem for this situation where the charac-
teristics are given by Eq. (19).

Having determined the pseudo cell average g, we now
need to complete the time step by evaluating the second part
of the time splitting, Eq.(23). First we note that the
coefficient of the source term v is independent of £. This is
seen easily if we evaluate this term:

—d d
(ot = A

Therefore, we can integrate Eq. (23) over a cell in space
from X;_,, 10 %,,,, and divide by the grid spacing A to
obtain

1 Xiv 12 1 a2
[ retag L[

h 12

Xim1/2

A

~ 12 r

1”7 rn+]
f ve p(%, 0y dt - d%.

581/110/2-13
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From the definitions of the cell averages we obtain

. L] pEep et
AT

Koz T

v pUR, 1) dr di.

Now if we make a trapezoidal approximation to the time
integral of the form

L

I

B 1) di =3 e ) - G, £101)
) plEs )]

and since v, is independent of £, we can approximate
Eq. (23) as

- oAt n =, ux En
P;H:‘Ij'*'ﬂ[v.e(xb(t T BT vax, ™) BT

This can be re-arranged to give a cell average correction to
the pseudo cell average ¢, of the form

- At -1
P;H =[] _Eﬁvi(xb(["+l))]

At

x[@--{-ﬂ vj(xb(t"))ﬁ_;’]. (26)

4.3. Scheme Outline and Interpretation

In summary the scheme for a two-material configuration
has the following outline:

« Determine the correct upper surface boundary condi-
tion pj using either inequality (6) or (7) and the limit value
of the slope pj,..

+ Propagate the cells adjacent to the moving boundary
to determine x,(f) and dx,{t}/dr using the Rankine
Hugoniet condition (5). We can then determine the lower
boundary condition pf using the limit slope p}. and
dx,(1)/dt and inequality (8).

= Reconstruct the slope values p(x, "} as a piccewise
polynomial approximation from the cell values p7.

» Propagate piccewise polynomials forward in time using
a Runge-Kutta scheme to solve Eq. (20).

» Solve the Riemann problem using the flux f{p)=
G % XM 5= 5, 50— o0

+ Approximate the time averaged flux & using numerical
quadrature and calculate the pseudo-cell average g, using
Eq. (25). '

+ Correct the pseudo-cell average g, using Eq. (26) to

evaluate 7+,
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+ Update the x values using

(xp(" N =c)

x(t+ At)= ) =) (X—-c)+c

In determining the upper boundary condition pj}, the pro-
cess of evaluating the inequality (6) or (7) is minimized if the
turning points of the function f{p)/(p — g'(x,(})) are deter-
mined. This is because the correct boundary value will
either be the slope value at a turnting point of this function
or the limit slope value. This does assume that the interface
slope g'(x,(1)) is a constant which is not too limiting an
assumption for many etching configurations. The lower
boundary condition is determined by initially making a
coarse search to find the correct root as defined by the
inequality (8) and then using a faster converging algorithm,
like a Newton-Raphson iteration, to determine the root
exactly. Finally, it should be noted that, although the mesh
size # is changing at each time level we do not have
to recalculate the derivative coefficients, used in the
reconstruction stage, since they can be stored as multiples
of A for an equispaced mesh.

Some insight into the effect of performing this co-ordinate
stretching can be acquired by considering the test Riemann
problem, shown in Fig. 11. We consider the initial condi-
tion, where the left-hand state is larger than the right,
p~ > p*. For this case we construct the convex envelope,
which helps determine the correct entropy satisfying solu-
tion, for an untransformed and transformed fiux function.
The convex envelopes can be seen in Fig. 13: the first figure
shows the envelope for the untransformed flux f(p) and the
second figure shows the envelope for the transformed flux

a f(p)

Stationgry shock '

Eyual sir:

Pe . P
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M pt=G(p, x,, &) (assuming a moving boundary with
negative speed). In the first case the shape of the convex
envelope would imply that the solution is a stationary shock
between two shocks moving with equal and opposite speed
separated by expansion regions. However, the solution for
the transformed flux would be two shocks moving with
positive speed and a third with negative speed, separated by
expansion regions. Nevertheless, we see that the originally
stationary shock is now moving with a speed which is equal
and opposite to the mesh speed (— v} at a given x location.
The right-hand shock, shown by the line passing through
(p*, f{p™)), is faster in the transformed plane since it will
have to move against the mesh to maintain its original posi-
tion. Similarly, the left-hand shock moves slower in the
transformed plane since it is moving in the same direction as
the mesh. Therefore, it can be appreciated that the same
entropy satisfying solution will be achieved in each case; this
can be seen by the numerical solution to this Riemann case
in Sections 3.2 and 5.

4.4. Remeshing

Remeshing becomes an issue since we need to maintain a
reasonable CFL condition,

[Umax| 47
Pmax] 77 4,
P

However, |b,,.,| 15 not easily defined here since the moving
boundary speed dx,/dr can be infinite; this occurs as the
slope of the upper surface pj, approaches the interface slope
g'{x,{t)). Nevertheless, if we assume that the moving

b G(p)

peed nf mesh

oppasile

Shack 1 oving with

H

i

Slower leﬁhan&_
shock

Fasler righthand
shock -

FIG. 13. Upper convex envelopes corresponding to a test case Riemann problem: (a) shows envelope for untransformed flux; (b} shows envelope

for transformed flux.
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boundary speed is bounded by |dx,/dr| < (dx,/dt) .., We
can define |v,,| as the fastest characteristic speed:

Vmaxl = Vmax T fmax max (f(p), £(p))

Vinax = Bmax(dxb/dl)max

Xpllo} —c
Xp(tq) — AH(dXp /@) ax — €

At{d
zl-{—O( I( tPj/dr)mﬁm),

Xplte)—¢

»Bmax =

for a time interval from t; to ¢, + At. In general, a working
value of B, =1, s0 |v,,.,] can be considered as the maxi-
mum absolute moving boundary speed plus the maximum
absolute gradient of the upper and lower flux functions.

It can be appreciated that if we allow the mesh spacing to
be reduced indefinitely then as # tends to zero, 4¢ must tend
to zero in order to maintain the CFL condition. To over-
come this we define a minimum mesh size h,,;,, and remesh
the grid whenever i < fi,,,,. The major requirement for the
remeshing is that it be conservative. This will be satisfied if

i=K
= hew
pi -
i=0

=N
Sold _
T M=

j=1

Typically K= N —1 since we usually only decrease the
domain by one cell at a time. Harten ¢f al. [8] have shown
that the reconstruction is conservative in the sense that
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where R(x, p), denotes the piecewise polynomial
appreximation to p(x, ") from the cell averages p” in cell /.

One consistent way to remesh is shown in Fig. 14. Here
we gvaluate the new cell average #7°" by adding the areas
under the reconstructed curve of p(x, ¢} and then dividing
by the new mesh spacing #,,,, i.e,

2

1
= new __
p;’ - ,’l
new M2

+[7" R ), dx], (27)

Xj4 vz

R(x, p),_, dx

where Ryew = Vi 12— Pio 12

Therefore the shaded areas in Fig. 14 represent the new
cell average 7" muitiplied by the new grid spacing #,,,,. In
order to evaluate the integrals to a consistent order of
accuracy we need to use numerical quadrature. Since the
functions are polynomials the integrals can be evaluated
exactly, although it does mean that the polynomials need to
be interpolated at the quadrature zeros in the integral
interval. This operation may thercfore become quite
expensive, although it is not being executed at each time
step. An alternative method which is still conservative, but
is only first-order accurate, is to approximate the integrals
in Eq. (27) by

A _ _
J R(x, p)j—l dx:p;."fl '(xj+lj2‘yi~[,’2)'
Yio12

This means that the new cell average is evaluated by

| EENT . R . | _ _
EJ Rix, p)ydx=p,, P?ew':h (p;')l_dl(xj+lfl_yiﬁlﬂ)+pj0]d(yi+1;‘2'_xj+1/2))-
G-z new
Tl X, T T Cell X Cell X, ™™
— ! j+2
5 xj' 172 xj+1/2 : Xj+3f2 )‘;{j.ps]z
o Cell Y, >t Cell ¥, — o Cell Y —!
S A R S DU

iz Yiin

Yinn Yivan

F1G. 14. Remeshing in a conservative fashion. The cells X, are remeshed on to the cells ¥,, Shaded areas show the region of integration which must

be evaluated to determine the new cell average 7%,
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This equation is demonstrated geometrically in Fig. 15.
The new cell average is now made up of fractions of the area
given by the old cell averages multiplied by the old mesh
spacing. It can be appreciated that this method is easier to
code since it does not involve any quadrature evaluations.
Also since the operation is not evaluated at every time step
the loss in accuracy may well be acceptable, The remeshing
in the present calculations have been evaluated in this
manner.

For a two-material configuration, where the ends of the
complete domain are fixed and there is only one internal
moving boundary, one mesh will be contracting whilst the
other will be growing. Therefore, when it s necessary to
remesh, due to CFL restrictions in the contracting domain,
the growing domain can also be remeshed by adding an
additional mesh point. This will help accuracy since the
maximum size of /2 will be limited. The remeshing in the
growing domain is done in a similar fashion as shown
above, cxcept the original mesh spacing will now be larger
than the final mesh spacing. It should also be appreciated
that in the contracting domain there may be new cells that
entirely cover an original cell. In this case the operation stil
only involves two integrals since the integral of the
completely covered cell is equat to %7 - 4.

4.5. Ceonvergence at the Moving Boundary

As has been discussed previously, for some configurations
we can expect to have an expansion wave at the moving
boundary connecting the physically correct boundary
condition to the limit value of the slope. However, this can
cause numerical problems. The nature of the ENO scheme

YT

Fi

P Xn P Xjen

H

Y Yo

T CeliX, Ty CeX T Cell X

SHERWIN, KARNIADAKIS, AND ORSZAG

is such that the stencil requires some ability to move in
order to be essentially non-oscillatory. This clearly is not the
case at the boundary where the stencil is fixed. As an exam-
ple we can consider a test case where the solution has an
expansion wave at the boundary. If we vse the flux function
given by Eq. (12), we can construct such an example by
considering a configuration with slope p*{x, t;}=03 and an
interface slope of g’ = 1.5,

We are able to solve for a single material with a moving
boundary since the physical argument that the upper
material evolution cannot be dependent on the lower
material evolution means that no information from the
lower surface is required to solve for the upper material.
Nevertheless, the interface slope g'(x,) implies the existence
of a second material, although the evolution of this material
is not being calculated.

Figure 16 shows the evolution of this test example at
intervals of one time unit in the (x, p) plane. The left-hand
figure shows the result for a fourth-order spatially accurate
scheme, where the stencil order is r = 5. It can be seen that
the expansion region develops relatively rapidly and then
begins to oscillate around the correct boundary condition
which is p} = —0.403846. It should be appreciated that this
test case is particulariy hard to evaluate since the expansion
region is moving with a similar velocity to the moving
boundary. In tests where this is not the case convergence is
seen in a less oscillatory fashion. The fact that the expansion
region is relatively small also means that the effect on the
profile in the (x, ¥) plane is minimal. Nevertheless, some
improvement is noted if we use a lower order stencil in the
last three cells next to the moving boundary. The results
from using a stencil order of r = 3 in the last three cells can

Wl j+2

|

| o1
&

Xivap

}gtj+5/2

e el Y, o Coll Yt el Y —

Yinn Yis3n

FIG. 15, Remeshing in a conservative fashion. First order accurate method. The cells X, are remeshed on to the cells ¥, Shaded areas show the region
of integration which must be evaluated te determine the new cell average 57>,
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g /lnterfaos
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FIG. 18. Numerical solution of a Riemann problem in the (x, y)
plane. Each line corresponds to the evolution after two time units, The
right-hand boundary moves along an interface of slope g'{(x,) =1.35.

fixed boundaries and for a domain where the boundary
at x=1 was moving. In the moving boundary case the
boundary condition at x =1 is given by the limits value p;,
and the boundary speed was determined from Eq. (5). In
this case the minimum grid spacing was such that no
remeshing took place, thereby eliminating possible: errors
from this operation. The interface slope was g'(x,)=0.
The solution to the problem with two fixed boundaries
shows an increasing convergence rate with the accuracy
of the scheme (Fig. 17). This has been seen previously in

4
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Section 3.1 since when the boundaries are fixed we only
have a single material problem. Nevertheless, this acts as a
good basis on which we can compare resuits of the moving
boundary problem. Not surprisingly we see that the moving
boundary problem has the same convergence rate for the
first- and second-order schemes but not for the third- and
fourth-order schemes. This may well be due to the use of the
trapezoidal approximation to the integral in the second part
of the time splitting {(see Section 4.2). This approximation s,
of course, only second-order accurate and is used to
determine the final cell average at the new time level from
which the soltion is reconstructed.

The remaining resuits all use the flux function f{p} given
by Eq. (12). The result shown in Fig. 18 is the solution to the
Riemann problem solved for the fixed boundary case in
Section 3.2. The initial condition is given by the uppermost
line and each subsequent line corresponds to a two time unit
interval. In this case we have introduced an interface with
slope g'(x,)= 1.5 at the right boundary. We sec that the
same shock information is achieved and no anomalies have
been introduced due to the co-ordinate stretching.

Figure 19 shows a geometry which causes an expansion
region to develop at the right-hand boundary. Each line in
these figures represents the profile after an interval of 1.5
time units; the uppermost line in the (x, y) plane shows the
initial condition. We note that the expansion region con-
verges reasonably rapidiy as can be seen by the right-hand
side of the (x, p) planc. This expansion can be scen as a
region of curvature developing in the (x, y) plane. The
shock in the initial profile convects at a constant speed
towards the [eft.

Figures 20 and 21 show the evolution of a more realistic
etching configuration. Here, we see half of a symmetric

plxt)

X

FiG. 19. Evolution of test geometry in (x, y) and (x, p) planes. The geometry is such that an expansion region develops at the right-hand moving
boundary. The initial cusp in the p(x) surface is seen as a shock in the (x, p} plane.
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FIG. 20. Evolution of a two matetial configuration in the (x, y) plane with a selectivity of 10. The interface slope is g’ =0. We see a shock bifurcation
in the upper surface and another shock development at the moving boundary in the lower surface.

configuration. The initial profile is made up of a rectangular
upper surface mounted on a flat lower surface. The interface
slope is therefore zero. Figure 20 shows the evolution of the
surface when the selectivity is 10 whilst Fig. 21 shows the
evolution when the selectivity is 20. Selectivity is the ratio of
the etching rate in the lower material at zero slope (p'==0)
to the etching rate in the upper material at zero slope
(p* =0} (ie., selectivity = f(0)/f*(0)). Fach line in the
(x, v} plot represents the profile after an interval of two time
units. In this case the upper material boundary condition pj
is the same as the limit value p}, so there is no upper surface
expansion region. Nevertheless, we see that the initial cusp

Intertace

y{x.t)

T T [ T T e T T e

X

FIG. 21,

in the upper material bifurcates into a left- and right-hand
moving cusp which would be seen as shocks in the (x, p)
plane. The lower material can be seen to develop a shock at
the moving boundary. This shock connects the region of
constant slope, to the right of the shock, to an expansion
region. The expansion region connects the shock to the
moving boundary. The calculation here assumes that the
flux function in the lower material is given by Eq. (12). The
effect of shadowing indicates that this is still not a very
realistic form for the lower flux function (see Section 2.1).
A more accurate estimate of the flux function for the lower
material is addressed in the next section.

Evolution of a two material configuration in the (x, )} plane with a selectivity of 20. The interface slope is g' = 0. We see a shock bifurcation

in the upper surface and another shock development at the moving boundary in the lower surface.
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6. LOWER SURFACE MODEL DEVELOPMENT

Jurgensen and Shagfeh [1, 47 have proposed a model
described in Section 2.1 which assumes that the mean-free
path of the particles in the plasma is far larger than the
characteristic length of the etched features. The flux furiction
can then be calculated in the following manner.

6.1. Flux Function Calculation

We consider a flux function given by

f(p> B)=HP(B)'p—'Up(B),

where (u,, v,) are the local surface velocities in the (x, y)

.direction for a two-dimensional model. We will use (u,, v,)
to denote the surface velocity in the co-ordinate system
shown in Section 2.1 and V = (u, 1, w) to denote the surface
velocity in the (x, ¥, z) directions for the calculation
presented below. This calculation has a co-ordinate system
shown in Fig. 22. The co-ordinate systems are related by a
rotation of n about the x axis and so u=u, and v= —v,.
We note that the function B is purely dependent on the local
slope p in a locally self-shadowed region and dependent on
the position (x,, y,) in a shadowed region, where (x4, Vo)
is the position of a shadowing point. The general form of the
velocity vector V is given by

V(X)——-I df dg sin(6) Y(E, 2) (6, ¢).  (28)
2(X)

The nomenclature here is shown in Fig. 22. Y is the
volumetric yield per bombarding particle which is
considered to be dependent upon the energy of a particle E
and the angle between its direction of travel and the surface
normal at the point of impact “x” and j is the differential

Upper surface

Lower surfacs
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particle flux vector in the direction {6, ¢), where @, ¢ define
a spherical co-ordinate system. Therefore gt de sin(f) is a
differential element of solid angle. Finally, £2(x) is the region
of solid angle that has a line of sight of the plasma at point
x. It should be appreciated that despite the complexity of
the above integral it only depends on 2 and the integration
domain £2(x), since £is assumed to be a function of (6, ¢).
We note that a can be expressed as a function of the slope
p and the particle incidence (8, ¢). Nevertheless, it is no
trivial matter to determine the functions Y and j.

Figure 23 shows a one-sided shadowed region for a point
X. The integration domain $2(X) for this configuration is
shown by the shaded region. We note that although this
is essentially a two-dimensional configuration, since the
materials are assumed infinite in the z direction, the integra-
tion domain is still three-dimensional. For this configura-
tion, Fig. 23, where B is the angle between the shadowing
point and the vertical in the (x, y) plane, the integration
domain is given by

QX)= {OS_GSH/Z

_n+¢as¢‘<‘-n—¢aa
where ¢, = arc cos{tan{B)/tan(8)). So it can be appreciated
that, although we need to calculate the integral over a
three-dimensonal solid angle, the integration domain
in a two-dimensional calculation can be obtained from
information in the plane of the calculation.

Shaqfeh and Jurgensen [4] have evaluated this integral,
Eq. (28), for a purely energy-dependent yield. In this case we
replace the volumetric yield Y(E, «} with the average vield
for a bombarding particie ¥{#, ¢) moving in the direction
defined by (6, ¢). This is assumed to be proportional to the
average energy E(0, ¢) of the particle at (6, ¢), ie.,

(0, §)=kE(, ¢).

FIG. 22. Nomenclature for flux function calculation using the formulation by Jurgensen and Shagfeh [4].
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FIG. 23. Shadowing region for a point X in the lower surface. Here the
point is only shadowed on one side by the surface interface.

We can consider the differential particle flux vector j(8)
as its magnitude j{8) times a unit vector p in the {4, ¢)
direction such that

p(6, ¢) =sin(f) cos(¢) 1, + cos{#) 1, + sin{0) sin(¢) 1,

where (1., 1., 1.) are unit lengths in the (x, y, z) directions.
If we assume an azimuthal symmetry about the electric field
lings which are tangential to the y direction, the velocity
vector has components given by

u=kj d9 df sin® 6 cos $(8) E(0), (29)
QX)

u=kj d0 dé sin 0 cos 0j(8) E(6). (30)
24X

Integrating Eqs. (29} and (30) with respect to ¢ over the
integration bounds given above we obtain

u=—2k f"ﬂ dd sin’® 0j(0) E(8) sin(4,)

b= 2k jm d6 sin 0 cos 8j(8) E8)(n — &),

0

Here j(#) is the magnitude of the flux of bombarding
particles moving in the direction @ and E{0) is the average
energy of those particles. The w component will necessarily
be zero due to the azimuthal symmetry and the fact that
there is no non-symmetric shadowing in two dimensions. To
obtain distributions for these values we use the approximate
distributions developed by Jurgensen [11]. His model
treats the incident particles as a monoenergetic beam that is
first accelerated to the average bombardment energy and
then is scattered by neutral particles while crossing a fieid-
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free region with a thickness proportional to the sheath
thickness. The “effective” sheath thickness is taken to be
S(1+4p0..S)
T 2T+ p0aS)’

where § is the sheath thickness, p is the number density, and
g, is the charge-transfer cross section. The energy weighting
factor for this model is

E(6) = cos*(0).
The magnitude of the flux vector is given by

A(9)

= 0} p D exp(— D

cos(0) Le(0} p D exp(—po, D)],

where g{f) is the differential cross section and ¢, is the total
cross section for scattering at angles greater than 8. The
evaluation of this term is simplified by the analytic
relationship,

2 e
—”j 48 sin 6 cos 8j(8) = exp(— poy D).
Il

The right-hand side can be evaluated, given a value of p
and D and using a small angle approximation with a
modification factor for g, as given in [11]. This function
can then be numerically differentiated with respect to # to
approximate [sin # cos 6j(#)]. The constants J and & can
be eliminated by making the governing slope equation
non-dimensional.

In practice the integrals are evaluated by tabulating them
as functions of B and then using linear interpolation to
determine a continuous function. To appreciate why this is
possible we evaluate the velocity integral (29), (30) using
a co-ordinate system shown in Fig. 24. In this case the
integration domain for Fig. 23 is given by

_{—-nl2<a<n/2
f20x)= {B <b<m/2
YA
4 =X
-b v
'---....-------....'V
Y

FIG. 24. Alternative co-ordinate system to evatuate the velocity
integrals.
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FiG. 27. Selution of a test problem, both plots show the same geometry but the second plot is solved in an axis system which is rotated by 9°.
In each case the dotted lines show the initial condition and each subsequent line corresponds to an evelution of 0.05 time units. A selectivity of three

was used.

shown in Fig. 26. In the original (x, y) axis system we have
the slope equation,

P+ flp). =9,
f(P):uFP‘—Up-

where p=27ay/0x

In the (7, s) axis system the slope equation is

ql +j(q)r =0,
H@y=u,q- v,

where g =0s/0r

The slopes p and ¢ are related by the equation
arctang=arctan p+do
and the local velocities are related by the equations

uq=h‘pCOSOC—UpSlHO£

v, =1, cos o+ u, S o,

Since we tabulate the values of the local surface velocities
(u, ) it is quite trivial to gencrate the flux function for either
co-ordinate system. Provided we have a region of constant
slope at cither end of the computational domain so that we
can impose Dirichlet boundary conditions there are no
further complications to calcuiating the surface evolution.
The first plot in Fig. 27 shows the evolution of a test case
in the original axis system (x, v). Here we have a slope of
p= —04joining a slope of p = —0.1. The selectivity is three
and the interface slope is g'(x;)=1. The lines show the
evolution of the surface after 0.05 time units and the initial

condition is given by the upper dotted line. The second plot
shows the same configuration but is solved in an axis system
which is rotated clockwise by 9°. We see the same shock
development at the moving boundary in the lower material;
this is perhaps more evident if we consider the solution
rotated back to the original co-ordinate system as shown in
Fig. 28.

6.2.3. Ouiflow Buffer Domain

The use of a rotated co-ordinate system introduces the
problem that the lower material boundary is no longer a

o .
=0 -.
B ]
| — ]
b t —
b t i —
[ Matarial interface ]
=
2 7 J
: J
05 -

0.5 1 1.5 2

FIG. 28. Test problem solved in rotated co-ordinate system but
plotted in original axis system. Initial condition is given by the dotted line
angd each subsequent line corresponds to an evolution of 0.05 time units.
A selectivity of three was used.
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point of symmetry. This is not a problem if we are only
etching a single feature since we can simply extend the com-
putational domain out to a point where the movement of
the far side boundary does not interfere with the region of
interest. Nevertheless, if the feature has a shadowing point
from the far side we are not able to extend the computa-
tional domain in a similar fashion. To overcome this
difficuity we extend the domain but use the local velocity at
a physically meaningful position V(x,.) for all values
beyond this point, thereby producing an outflow buffer
domain, i.c.,

_ V(x)s X Xbe
V(x) B {V(xbc')a

X > Xy

This allows calculation up to the boundary position of the
initial profile, in the unrotated co-ordinate system, provided
it is an outflow boundary, The outflow condition is
necessary since the extended domain is unphysical, and so
information cannot travel from this region. This is not as
restricting as it might seem since in general this boundary 1s
an outflow condition; if this is not the case a solution of the
complete geometry on the right-hand side would be
required.

6.3. Undercutting and Reactive Ion Etching (RIE) Lag

Two physically observed phenomena that can be
modeled by the algorithm presented are undercutting and
reactive ion etching (RIE) lag,

Undercutting refers to the lower surface undercurting the
upper surface. To appreciate how this can occur we first
consider the flux function as calculated in Section 6.1. We
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FIG. 29. Angle independent flux functions for solution in rotated
domains. For an angle independent flux function we see that in the
unrotated co-ordinate system the flux function tends to infinity as |p| — co.
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note that the flux function is an increasing symmetric func-
tion of p, in the unrotated co-ordinate system, see Fig. 29.
Therefore, as the slope tends to infinity so does the flux func-
tion. This happens because in calculating the local surface
velocity we assume that the surface etches in the net direc-
tion of the energy flux vectors of particles hitting the surface.
Therefore, even if the surface has an infinite slope it will
have a finite Jocal velocity. The only way, therefore, a sur-
face of infinite slope can have a finite local velocity is if it has
an infinite flux. From the form of the flux function it can be
appreciated that there are values of the moving boundary
speed which would not allow for a solution to the lower
Rankine Hugoniot condition, Eq. (5). We recall that the
moving boundary speed dx,/dr is geometrically interpreted
as the slope of a straight line in the (p, f{ p)) plane represen-
ting the Rankine Hugoniot condition. In general the two
materials have different etching rates as is indicated by the
selectivity. Therefore, it is conceivable that the moving
boundary speed, which is determined by the upper surface
limit slope pi , may not have a root in the lower surface
Rankine Hugoniot condition. Nevertheless, this does not
mean that there is not a physically meaningful solution, but
that the equation in this co-ordinate system does not have
a solution. If we now consider the flux function for a co-
ordinate system which is rotated by 9°, as shown by the
dashed line in Fig. 29, we see that there will be solutions for
a wider range of moving boundary speeds since a given line
can have a larger range of slope values that intersect this
curve, The kink in this flux curve at approximately p=6
corresponds to the infinite slope (p=oo) in the original
unrotated co-ordinate system since « tan(6.314)+ 9=x=90.
At this point, the lower surface undercuts the upper surface.
It can be appreciated that calculation of this boundary
would have been impossible without the use of a co-
ordinate rotation in the computational domain. We find

&>0

909 < 0

9<9(}0

FIG. 30. Interpretation of the @=arctan(p) angle used in flux
function calculation.



NUMERICAL SIMULATION OF THE ION ETCHING PROCESS

that if we use the same form for the flux function in both the
upper and lower surface then for an upper limit slope value
of pym =10 we can solve up to a selectivity of about six.
However, if we use a rotation of 18°, as shown by the dotted
line in Fig, 29, then a selectivity of the order of 10 can be
achieved.

[t is worth noting at this point that we require informa-
tion about the local surface velocity in three quadrants in
order to use the present algorithm. As can be seen in
Fig. 30 we tabulate values for surface angles between
—180° < 68 <90° This is because we require the region
—180° £ 6 £ —90° to determine the lower surface bound-
ary condition in the case of undercutting. In this case the
computational angle in the rotated domain will be close to
—90° and when the physicaily unrotated angle is recovered
it may be less than —90°. We calculate the positive
quadrant 0<8<90° for stability considerations since we
wish to consider the surface where p =0 and therefore slight
positive slope values are plausible in the calculation. In
the case where we have two shadowing points, the far side
shadowing point would usually have a positive 8 value. In
this case we set § = —180° + 0 since this is the equivalent
shadowed angle for the flux calculation.

The second phenomenon that we wish to capture is the
RIE lag. It has been observed that features of different
aspect ratios etch at different rates. Aspect ratio is defined as
the depth of the planarising layer (the lower surface} divided
by the width of a trench. In general, we find that features in
an open field, where the aspect ratio is zero, etch at a faster
rate than features in close proximity. This is to be expected
as when features are in close proximity there are two
shadowing peints. Thus the integration domain used to
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FIG. 31. Lower surface boundary slope py, convergence at the

moeving interface for case shown in Fig. 27. Plot shows convergence using
a five-point stencil with and without lower order stencils at the boundary.
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FIG. 32. Lower surface boundary convergence at the moving interface
for the case shown in Fig. 36. The solid line shows the numerical slope
boundary condition p, and the dotted line shows the limit slope value pi,.

calcuiate the local surface velocity (and therefore the flux
function) will be smatler.

Results for both these phenomena are shown in
Section 6.4.2.

6.4. Results

6.4.1. Lower Surface Boundary Condition Convergence

As previously mentioned the lower surface boundary con-
dition at the moving interface can also cause complications.
In a similar fashion to the upper surface boundary condi-
tion, Section 4.5, we use a lower order stencil at the moving
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FIG. 33. Etched profiles after a non-dimensional time of 0.4 for the
case shown in Fig. 34. As the spatial resolution is increased in the lower
surface we see convergence to a unique profile.
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FIG. 34. Evolution of twe material configurations in the (x, y) plane with a selectivity of seven; each line corresponds to a non-dimensional time
of 0.1, The lower surface is only shadowed from the left. We see that there is strong undercutting of the upper surface,

boundary. This is illustrated in Fig. 31. Here we see the
convergence of the lower surface limit value pj_ to the
appropriate boundary condition p’, for the test case shown
in Fig. 28. We see results for two cases; the first corresponds
to using a five-point stencil in all the computational domain
of the lower surface and the second uses a three-point stencil
in the three cells adjacent to the moving boundary. As can
be seen the convergence is far more oscillatory if we use a
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five-point stencil everywhere. The effect is damped by the
introduction of lower order stencils at the boundary. This is
probably due to the addition of more numerical viscosity in
this region.

Figure 32 shows the boundary convergence of the test
case shown in Fig. 36. Due to the far side shadowing the
boundary value has a time dependence. The dotted line
shows the limit slope value, p{,., with time whilst the solid

FIG. 35. Evoiution of a two-material configuration in the (x, y) plane with a selectivity of seven; each line corresponds to a non-dimensional time
of 0.1. The physical domain is assumed to be symmetric about the marked line which means that there is shadowing from both sides in the lower surface.
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7. CONCLUDING REMARKS

‘We have developed a numerical algorithm to solve a non-
linear hyperbolic conservation law on a moving mesh. Two
approaches to formulating the flux function have been
adopted: the first is used in the upper material where the
surface is considered as locally self-shadowed and the
second is used in the lower material where the matertal can
also be self-shadowed. In either case the major complica-
tions result from the moving interface between the
materials. This is because expansion waves and shocks may
develop at this point. This has caused complications
because the ENO reconstruction algorithm requires mesh
points on either side of the shock or expansion region in
order to resolve it satisfactorily. This is not possibie at
the moving boundary and we therefore find convergence
problems which result in a slow or oscillatory convergence,
We note that the algorithm presented for the two-material
configuration appears to be only second-order accurate,
Therefore the use of a high-order accurate scheme such as
ENO may not be suitable and the use of a second-order
scheme which does not require a moving stencil could be
more appropriate.

To extend the lower surface flux model we ideaily need to
introduce the angle dependence of the yield function. We
also require better knowledge of the energy and angle dis-
tributton of the incident particles. Knowledge of the particle
energy and angle distribution is beyond the scope of this
work and at present we consider this as a model input. The
volumetric yield for a given particle energy and incidence is
also assumed and is required as a model input. However, if
we assume knowledge of these inpuis we can tabulate the
local surface velocities as a function of the shadowing angle
B for a given slope angle p. We recall that the slope aliows
us to determine the angle « which is the only extra informa-
tion required to evaluate the velocity integral, Eg. (28),
assuming the model inputs stated above. Nevertheless, this
requires O( N'°) storage, where N is the number of tabulated
points for the B shadowing angle. This of course assumes
that we wish to use a comparable resolution in the tabulated
slope values as the shadowing angle, which may not aiways
be the case. However, the storage requirements are
noticeably increased.
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Finally, it should be appreciated that the algorithm can
be solved in parallel since, once the moving boundary has
been propagated forward over a time step, the interior
domains can be solved independently. There is a coupling
between the surfaces due to the shadowing angle calcula-
tion, although at present this caiculation is only made at the
beginning of each time step. If this calculation was updated
during the time step the algorithm could still be solved in
paraliel since the solution of the upper surface is inde-
pendent of the lower surface, if it is locally self-shadowed.
Therefore, this allows the upper surface to be propagated a
time step ahead of the lower surface which provides
sufficient information to solve the lower surface shadowing
angle in the previous time step.
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